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 Restarting S
hemes For Eigenvalue ProblemsyKesheng Wuz Horst D. SimonzMar
h 10, 1999Abstra
tIn studies of restarted Davidson method, a dynami
 thi
k-restart s
heme was foundto be ex
ellent in improving the overall e�e
tiveness of the eigenvalue method. Thispaper extends the study of the dynami
 thi
k-restart s
heme to the Lan
zos methodfor symmetri
 eigenvalue problems and systemati
ally explore a range of heuristi
s andstrategies. We 
ondu
t a series of numeri
al tests to determine their relative strengthand weakness on a 
lass of ele
troni
 stru
ture 
al
ulation problems.The Lan
zos method is an e�e
tive method for 
omputing extreme eigenvalues and the
orresponding eigenve
tors of large matri
es. In order to limit the maximum memory usageand redu
e arithmeti
 operations per iteration, it is often restarted. In this 
ase, the userspe
i�es a maximum number of Lan
zos ve
tors to be used, say m. After m Lan
zos ve
torsare generated, the approximate solutions are 
omputed and evaluated. If they are nota

eptable, a restarting s
heme is used to extra
t the most important information and theinformation is used in the Lan
zos iterations to again generate m Lan
zos ve
tors. The moststraightforward way to start the Lan
zos algorithm is to give it one starting ve
tor. Earlierrestarting s
hemes are derived based on this observation. Variations of this s
heme in
luderestarting with one Ritz ve
tor, restarting with a linear 
ombination of Ritz ve
tors and soon [12℄. A mu
h more e�e
tive s
heme named the impli
it restarting s
heme was dis
overedby Sorensen in 1992 [13℄. One important 
hara
teristi
s of this s
heme is that it allows anarbitrary number of ve
tors to be saved at restart. Another restarting s
heme with similarfeatures is the thi
k-restart s
heme [15℄ whose history 
an be tra
ed ba
k to earlier versionsof the Davidson method [6℄. However, this feature of restarting with arbitrary number ofstarting ve
tors are not fully exploited until re
ently. To 
ontrast with the impli
it restartings
heme, the thi
k-restart s
heme is often 
alled an expli
it restarting s
heme.Both the impli
it restarting s
heme and the expli
it restart s
heme allow one to improvethe e�e
tiveness of a restarting method. The 
hoi
e of exa
tly what and how many ve
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save is one of the determining fa
tors in the overall e�e
tiveness of the eigenvalue methods.The restarting s
hemes dis
ussed in this paper refer the strategies of making this 
hoi
e.More spe
i�
ally, this paper studies a number of heuristi
s for de
iding what and how manyve
tors to save in the thi
k-restart Lan
zos method for symmetri
 eigenvalue problems [16℄.Be
ause the strategies 
an not be 
ompared analyti
ally, we have 
hosen to 
ompare themusing a small set of test problems. Through this set of tests, we are going to identifysome eÆ
ient s
hemes for a type of eigenvalue problem arise from the ele
troni
 stru
ture
al
ulations. Through our e�ort, we also hope to identify 
learly unsound 
hoi
es and narrowthe sear
h range for future users.This paper is organized as follows. We start by des
ribing the thi
k-restart Lan
zosmethod in Se
tion 1. The test problems used are des
ribed in Se
tion 2. Se
tion 3 
ontainsthe basi
 rationale behind the di�erent restarting strategies and give a brief overview of whatanalyti
al tools are available for devising restarting strategies. The main body of the text,se
tions 4 and 5, 
ontains the details of how to implement the four main restarting strategiesand how to modify them in order to a
hieve better performan
e. In se
tion 6, we summarizethe observations made in se
tions 4 and 5, suggest how the four main strategies should beimplemented and demonstrate their e�e
tiveness on a large test problem.1 Thi
k-restart Lan
zos methodMany well known methods for eigenvalue problems, su
h as the Lan
zos method [10℄, theArnoldi method [12℄, and the Davidson method [5℄, have to be restarted in large s
ale appli-
ations either to redu
e the 
omputer memory usage or to redu
e the arithmeti
 operationsper iteration. For 
onvenien
e of dis
ussion, an iteration of the restarted method is thispaper in
ludes all operations asso
iated with one matrix-ve
tor multipli
ation. One 
onse-quen
e of restating these methods is that the restarted versions may take 
onsiderably moreiterations to rea
h 
onvergen
e 
ompared to their non-restarted 
ounterparts. An e�e
tiverestarting strategy is 
ru
ial to redu
e the number of iterations. In this paper, we will limitourselves to study only real symmetri
 or 
omplex Hermitian eigenvalue problems for whi
hthe Lan
zos method is the most e�e
tive method. Previously, the impli
it restarting s
hemehas been used with the Lan
zos method [1, 2℄. In this paper, we will study the thi
k-restartLan
zos method. For 
onvenien
e of dis
ussion, we brie
y des
ribe the the two major 
om-ponents of the thi
k-restart Lan
zos method, the Lan
zos iterations to extend the basis andthe restarting pro
edure.Given a matrix A, its eigenvalue � and the 
orresponding eigenve
tor x are de�ned byequation Ax = �x. The Lan
zos method 
omputes approximate values to � and x whi
h arealso 
alled � and x. If there arem Lan
zos ve
tors, they will be denoted by q1; : : : ; qm. In thepro
ess of 
omputing m Lan
zos ve
tors, the algorithm will also 
ompute �i; �i; i = 1; : : : ; mwhi
h are used later in the Rayleigh-Ritz proje
tion. Here is a brief des
ription of thealgorithm.InitializationTo start solving a new eigenvalue problem, take a starting ve
tor, normalize it andstore the resulting ve
tor as q1. Set k to zero.2



When restarting, k is set by the the restarting pro
edure whi
h also provides q1; : : : ; qk; qk+1,�1; : : : ; �k, and �1; : : : ; �k.IterateFor i = k + 1; : : : ; m,1. qi+1  Aqi,2. �i  qTi qi+1,3. If i = k + 1, qi+1  qi+1 � �iqi � kXj=1�jqj;else qi+1  qi+1 � �iqi � �i�1qi�1:4. �i  kqi+1k, qi+1  qi+1=�i.This short des
ription 
aptures the essen
e of the algorithm. We have ignored the detailsfor dealing with �nite pre
ision arithmeti
 in parti
ular the re-orthogonalization pro
edure[16℄ be
ause they are not dire
tly relevant to the restarting strategies to be dis
ussed. Thefollowing equations summarize the relation among the Lan
zos ve
tors produ
ed by thisalgorithm, (Qi = [q1; : : : ; qi℄)AQi = QiTi + �iqi+1ei; (i > k) (1)
Ti �

0BBBBBBBBBBBBBBB�
�1 �1. . . ...�k �k�1 � � � �k �k+1 �k+1�k+1 �k+2 �k+2. . . . . . . . .�i�2 �i�1 �i�1�i�1 �i

1CCCCCCCCCCCCCCCA : (2)
At the initialization step, i.e., (i = k), the following relation must be satis�ed,Aqi = �iqi + �iqk+1; i = 1; : : : ; k: (3)The value k in the above formula is 
alled the thi
kness in this paper. The simplest wayto satisfy this relation is to supply the algorithm with one starting ve
tor q1 (k = 0). Inthe thi
k-restart Lan
zos method, the restarting pro
edure produ
es k orthogonal ve
torssatisfying the above equation whi
h allows it to use arbitrary number of starting ve
tors.The main steps of the restarting s
heme 
an be des
ribed as follows.
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1. Compute an eigen-de
omposition of Tm, Tm � Y DY T . As in the Rayleigh-Ritz pro-je
tion, the diagonal elements of D are the eigenvalues of Tm and the approximateeigenvalues (the Ritz values) of A.If we only want to perform 
onvergen
e test, it is possible to only 
ompute the last rowof Y , whi
h will redu
e the need of both the memory and the arithmeti
 operations.2. Based on available information, de
ided what and how many Ritz values are to besaved. In our program, we order the eigenvalues of Tm in as
ending order and theentire de
ision redu
es to pi
k two integers kl and kr whi
h indi
ate that d1;1; : : : ; dkl;kland dkr+1;kr+1; : : : ; dm;m are to be saved. This paper is about how to 
hoose kl and krsu
h that the whole eigenvalue program takes the least amount of time.3. Let k = kl + m � kr. Denote the Ritz values to be saved as �̂1, �̂2, : : :, �̂k, andthe 
orresponding 
olumns of Y as y1, . . . , yk. The Ritz ve
tors 
an be 
omputedas q̂1 = Qmy1, : : :, q̂k = Qmyk, and q̂k+1 � qm+1. In addition, �̂1 = �mym;1, : : :,�̂k = �mym;k.This algorithm generates Ritz pairs as in the standard Rayleigh-Ritz proje
tion. Thedi�eren
e is in what Ritz values are a
tually 
omputed. In the standard Rayleigh-Ritzproje
tion, the number of Ritz pairs to be 
omputed is the number of eigenpairs wanted.If the smallest eigenvalues are wanted, than the smallest Ritz values are saved. If thelargest eigenvalues are wanted, than the largest Ritz values are saved. In the thi
k-restartpro
edure, we typi
ally save some largest ones and some smallest ones no matter whi
h endof the spe
trum we are interested in, and usually more Ritz pairs are saved than the standard
ase.Be
ause the matrix Tm is not tridiagonal in the thi
k-restart Lan
zos algorithm, morearithmeti
 operations are need to 
ompute an eigenvalue de
omposition for it. If the basissize m is relatively small, the extra amount of arithmeti
 will be negligible 
ompared to otheroperations in the restarted Lan
zos algorithm. For this reason, we will not dis
uss this issuefurther.2 Test problemsThrough out this paper we will use a small number of test problems repeatedly. They aredes
ribed in this se
tion.The three test problems listed in Table 1 
ome from two sour
es. The matrix si4 andsi6 are from simulation of ele
troni
 properties of sili
on atom 
lusters [3, 4℄. These tworeal symmetri
 matri
es are generated from the �rst step of the Self-Consist Field (SCF)iterations. They are relatively small so we 
an perform a large number of tests without
onsuming signi�
antly amount of 
omputer time. During our tests, we always 
omputethe 12 smallest eigenvalues and the 
orresponding eigenve
tors of si4 test problem and the16 smallest eigenvalues and the 
orresponding eigenve
tors for si6 test problem. Test prob-lem InGaAs9k is generated from simulation of a 9000-atom InAs quantum dot in an GaAs4



Table 1: Information about the test problems.NAME N NNZ Commentsi4 4451 84918 Ab Initio simulation of a four-sili
on 
lustersi6 7949 151524 Ab Initio simulation of a six-sili
on 
lusterInGaAs9k 137919 (full) empiri
al pseudopotential simulation of anInGaAs quantum dotsurrounding [17℄. This test problem has a 
omplex Hermitian matrix whi
h is not stored ex-pli
itly. The matrix-ve
tor multipli
ation is performed through Fast Fourier Transformations(FFT).These three test problems are 
hosen be
ause the authors are involved in proje
ts thatprodu
e similar matri
es. The sele
tion of the test problems is small. However, by restri
tingto these problems, we are able to perform a more thorough analyses of the di�erent restartingstrategies whi
h may ultimately reveal more about the restarting strategies.Sin
e all test problems 
ompute the smallest eigenvalues, we des
ribe the restarting strate-gies based on �nding the smallest eigenvalues. It should be straightforward to extended itto the 
ase of �nding the largest eigenvalues. When 
omputing the smallest eigenvalues, thesimplest thing to do is to always save a �xed number of the smallest Ritz pairs. This simplerestarting s
heme is 
alled the �xed-thi
kness s
heme in this paper. To measure the dynami
restarting s
hemes, we will 
ondu
t a series of tests to determine the optimal thi
kness forthe �xed-thi
kness s
heme. The tests are run with the starting ve
tor [1; 1; : : : ; 1℄T . The Ritzpairs are de
lared 
onverged if their residual norms are less than p�kAk, where � is the unitround o� error whi
h is about 2:2 � 10�16, and the norm of the matrix (kAk) is estimatedby the largest (absolute) Ritz value ever 
omputed in the Lan
zos method. All future testswill be performed using the same starting ve
tor and 
onvergen
e toleran
e.For the two smaller test problems, si4 and si6, we have 
ondu
ted the tests with threedi�erent basis size m = 20; 50; 100. The optimal thi
kness based on either the time or thenumber of matrix-ve
tor multipli
ations are listed in Table 2. In the table, the numberof matrix-ve
tor multipli
ations is denote by MATVEC. The top half of Table 2 showsresults that use the minimal number of matrix-ve
tor multipli
ations and the bottom halfof the table shows results that use the minimal amount of 
omputer time. These results areobtained by trying all possible values of k under ea
h given m (neig � k � m�3). We wouldlike to devise a set of strategies that 
an automati
ally 
hoose an appropriate thi
kness thatperforms no worse than results a
hieved here.The timing results in Table 2 are measured on a SGI Onyx 2 running at 195 MHz. Alltests involving si4 and si6 are run on this ma
hine. Tests involving the quantum dot problemwill be run on a Cray T3E parallel ma
hine to provide a di�erent prospe
tive.We have 
ondu
ted similar experiment with the quantum dot test problem to 
omputethe �ve smallest eigenvalues and the 
orresponding eigenve
tors. Figure 1 shows the timeand the number of matrix-ve
tor multipli
ations used to solve the InGaAs9k test problemwith di�erent �xed thi
kness. A basis size (m) of 25 is used in this test. The timing results5



Table 2: The minimal time and number of matrix-ve
tor multipli
ations used to solve twosili
on 
luster test problems using thi
k-restart Lan
zos method with �xed thi
kness (k =kl; kr = m). minimal number of MATVECm = 20 m = 50 m = 100MATVEC k MATVEC k MATVEC ksi4 488 16 274 34 268 44asi6 1621 16 274 22 271 43minimal time (se
onds)m = 20 m = 50 m = 100time k time k time ksi4 5.18 12 3.19 19 4.59 14si6 50.0 16 7.90 16 11.9 42a268 MATVEC is also used when k is 58 and 72.are obtained on 32 pro
essors of a Cray T3E 900. The optimal thi
kness in this 
ase is12 whi
h a
hieves both minimal number of matrix-ve
tor multipli
ations (1806) and theminimal amount of CPU time (179.6 se
). This is a mu
h large test problem than the twosili
on 
luster ones and the matrix-ve
tor multipli
ations take up a mu
h large portion ofthe total time too. Be
ause the matrix-ve
tor multipli
ations dominate the overall time,minimizing the number of iterations also minimizes the total time for this test problem.Now that we have established the performan
e target for the test problems, next we willexam what 
an be used to guide our 
hoi
e of restarting strategies.3 Rationale for the heuristi
sIn our version of the thi
k-restart s
heme, see page 3, the de
ision to be made is to 
hoosetwo integers kl and kr, see also Figure 2. This se
tion will review the theoreti
al tools that
an guide us in making this de
ision. We will see how they are used and why additionalheuristi
s are needed.There are two theoreti
al tools that 
an be used to analyze the 
hoi
es, the polynomial�lter and the approximate de
ation. The bases ve
tors generated by the impli
itly restartedArnoldi method and the thi
k-restart Lan
zos method are always orthogonal bases of someKrylov subspa
e, K(A; v) [13, 16℄. The starting ve
tor v 
hanges after ea
h restart. Thepolynomial �lter refer to the relationship between these starting ve
tors where the ve
torv before and after a restart is related by a polynomial of the form �m�ki=1 (A � ÆiI). Thes
alar values Æi are 
alled the shifts. In the impli
itly restart Lan
zos method, they 
an bearbitrarily 
hosen. In the thi
k-restart Lan
zos method, they are the Ritz values dis
ardedduring restart. Based on this polynomial relation, the optimal 
hoi
e for the shifts arethe Leja points [1℄. The polynomial �lter argument has strong theoreti
al foundation andprograms based on this me
hanism are found to be e�e
tive in pra
ti
e [1℄. However, this6
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Figure 2: S
hemati
s of sele
ting de
ision during thi
k-restart.analysis does not give an 
lear indi
ation of exa
tly how many shifts to apply or how manyve
tors to save when more than one eigenvalue is 
omputed.Another theoreti
al tool that 
an be used to guide the design of dynami
 restartingheuristi
s is the approximate de
ation feature of the Ritz ve
tors [9℄. To 
ompute eigenvaluesnear �, the Ritz values near � should be saved. Morgan's analyses indi
ate that the saved Ritzve
tors approximately de
ate the spe
trum, in
rease the e�e
tive separation between thewanted eigenvalues and the rest of the spe
trum, and 
onsequently in
rease the 
onvergen
erate of the restarted method [9℄. The dynami
 thi
k-restart s
heme used in the dynami
thi
k-restart Davidson method is su

essful example of using this argument [15℄.Sin
e the Lan
zos method is only e�e
tive in 
omputing the extreme eigenvalues, our7



implementation of the thi
k-restart s
heme only save some largest Ritz values and somesmallest Ritz values. When 
omputing the smallest eigenvalue, the e�e
tive gap ratio usedto devise the dynami
 thi
k-restart s
heme is [15℄
 = �kl � �1�kr � �1 (kl < kr � m): (4)Based on the approximate de
ation argument, saving more nearby Ritz ve
tors willresult in faster 
onvergen
e rate for the smallest Ritz value. Obviously the maximum gapratio is a
hieved when kl is kr � 1. However, in this 
ase, the e�e
tive gap ratio is a wildoverestimate of its a
tual value. In addition, when kl = kr � 1, an iteration of the restartedLan
zos algorithm is expensive be
ause the Rayleigh-Ritz proje
tion is performed after everymatrix-ve
tor multipli
ation and it always 
omputes m�1 Lan
zos ve
tors. Figure 1 
learlyindi
ates that as k approa
hes m both CPU time and the number of iterations in
rease.Similar to the polynomial �lter argument, the approximate de
ation argument does notsuggest an e�e
tive 
hoi
e of how many Ritz pairs to saved either. The innovation of thispaper is to augment these theoreti
al arguments with heuristi
s to make e�e
tive 
hoi
esduring restart.To redu
e the time and iterations in the dynami
 thi
k-restart Davidson method, thedevelopers of the dynami
 thi
k-restart Davidson method require that kr � kl + 3 [15℄.Be
ause the fun
tion 
 is a monotoni
 fun
tion of kl and kr, if no Ritz values are exa
tlyequal to ea
h other, this requirement leads to 3 Ritz pairs being dis
arded at every restart.The 
hoi
e of always dis
arding 3 Ritz pairs and saving m � 3 is somewhat arbitrary. Oneway to remove this arbitrariness is to develop an empiri
al formula for de
iding how manyRitz ve
tors should be saved. After ea
h iteration, the residual norm is expe
ted to de
reaseby a fa
tor proportional to e�
 by the de�nition of 
 [9℄. Maximizing 
 is equivalent tomaximizing the residual norm redu
tion for ea
h iteration. An alternative is to minimize theresidual norm at the end of an entire restarted loop. If k Ritz pairs are saved, after m � kiterations, the residual norm will de
rease by a fa
tor proportional to e�(m�k)
 . Minimizingthe residual norm at the next restart is equivalent to maximizing the quantity � � (m�k)
.It is 
lear that � is not a monotoni
 fun
tion unless the Ritz values are exponential fun
tionsof their indi
es. Therefore maximizing � should provide appropriate 
hoi
es for kl and kr.These approximate de
ation based heuristi
s are relatively simple. Next we will see howwell they a
tually work. There are also obvious limitations on these s
hemes. For example,the e�e
tive gap ratio are only meaningful if the saved Ritz values are 
lose to the a
tualeigenvalues. Typi
al at least some of the saved Ritz values are not a

urate, it might behelpful to take their errors into a

ount. We will explore this and related issues in se
tion 5in order to enhan
e the robustness of our restarting strategies.4 Implementing the heuristi
sThis se
tion des
ribes the details of how to implement the heuristi
s as a
tual 
omputerprograms. More spe
i�
ally, we will 
on
entrate on restarting 
hoi
es based on individualheuristi
s. Here is a list of four heuristi
s that we plan to use.8



1. Index based s
heme { develop an empiri
al formula for de
iding what are the appro-priate values for kl and kr.2. Residual norm based s
heme { save Ritz pairs that are near the wanted ones and alsohave relatively small residual norms.3. Maximizing the gap ratio 
.4. Maximizing progress, i.e., �nding kl and kr that maximize the value � � (m� k)
.Typi
ally, the restarted Lan
zos algorithm is used to 
ompute a number of eigenvaluesat a time. Most of the heuristi
s require one Ritz pair being identi�ed as the one 
urrentlybeing 
omputed. This idea is similar to targeting in the Davidson method and we will also
all the sele
ted Ritz pair the target in this paper. When 
omputing a number of smallesteigenvalues, the target is the smallest Ritz value that does not satisfy the 
onvergen
e 
riteria.Clearly, other 
hoi
es are possible. However, this simple 
hoi
e appears to work reasonablywell for the test problems. We will be using this 
hoi
e throughout the rest of the dis
ussion.When de
iding the parameters needed to make these heuristi
s into programs, we will usethe two smaller test problems, si4 and si6. The obje
tive of tuning these restarting s
hemesis to a
hieve the performan
e listed in Table 2.4.1 Index based s
hemeThe rationale for this s
heme is to save Ritz pairs near the wanted eigenvalues. The keyhere is to develop an reasonable formula that 
an a
hieve good overall performan
e. Forsimpli
ity, if the smallest eigenvalues are wanted, we only save the smallest Ritz values andtheir 
orresponding Ritz ve
tors. Using the simple formulae 
onsidered here, if there isonly one eigenvalue to 
ompute, this s
heme will revert ba
k to the �xed-thi
kness s
heme.These formulae are based on the number of Ritz pairs already 
onverged n
, the number ofeigenvalues wanted neig, and the basis size m. It di�ers from other three dynami
 s
hemesin that it does not use information about the Ritz values or the residual norms. Given amaximum basis size m, if the thi
kness k is kept 
onstant, the optimal value of k is oftennear m=2 for moderate size neig and m, see for example Figure 1. Based on this observation,our �rst formula for 
hoosing k is k = n
 + (m� n
)=2: (5)MATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 536 282 301 4.65 3.29 7.21si6 1561 282 403 34.9 8.18 18.7The above table shows the iterations and time used by the thi
k-restart Lan
zos methodusing this restarting strategy. Compared with the results in Table 2, the number of iterations(matrix-ve
tor multipli
ations) and the time are 
lose to the optimal values a
hieved with�xed thi
kness for basis sizes of 20 and 50. However, when the basis size is 100, signi�
antly9



more time is used in this 
ase. From the last 
olumn of Table 2 we see that k = 40 seems tobe a good 
hoi
e for both test problems. Base on this observation, we proposed to graduallyvary k from m=2 to 2m=5 as m=neig in
reases, for example,k = n
 + (m� n
)(25 + neig10m): (6)The time and iterations used by the thi
k-restart Lan
zos method with this s
heme of 
hoos-ing k are MATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 548 304 275 4.80 3.38 5.86si6 1561 279 276 35.1 7.82 11.9From this table, we see that 
hoosing the thi
kness a

ording to Equation 6 leads to betterperforman
e 
ompared to using Equation 5 for si6, but not for si4. The iterations and timeused by this 
hoi
e of thi
kness are 
omparable to the results shown in Table 2 for most
ases. Only in one 
ase, solving si4 test problem with m = 100, the time used is signi�
antlymore than in the optimal �xed thi
kness 
ase. Sin
e the value of k that a
hieves minimaltime is very 
lose to neig for si4 test problem. We de
ide to test the following formula as wellk = n
 + neig: (7)The results of using this 
hoi
e is as follows,MATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 456 297 298 5.27 3.09 4.58si6 1741 277 416 44.7 7.44 16.1We see that this 
hoi
e work well for m = 50 but not so well for smaller m and it also
auses more time to be used for si6 test problem with m = 100. We have tested many other
hoi
es to predi
t the optimal k based on neig, n
, m and parameters other then Ritz valuesor residual norms. None of them 
an 
onsistently generate better performan
e than usingEquation 6. We believe this is be
ause one formula 
an not predi
t the optimal k valuesfor the two test problems. This suggests that a robust strategy must take the spe
truminformation into 
onsideration. For the moment, we a

ept Equation 6 as the formula toimplement this strategy.4.2 Mimi
king ARPACKThe eigenvalue pa
kage ARPACK has an implementation of the impli
itly restarted Lan
zosmethod for symmetri
 eigenvalue problems [8℄. The restarting s
heme in ARPACK alsodetermines how many ve
tors in a similar manner as des
ribed in previous subse
tion. Herewe will brie
y examine the s
heme used in ARPACK and see how Equation 6 works inARPACK. 10



Table 3: The time and number of matrix-ve
tor multipli
ations used by ARPACK to solvethe si4 and si6 test problems.MATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 523 308 343 10.1 7.0 11.5si6 3373 421 471 155.6 20.7 31.0In version 2.4 (dated 07/31/96) of ARPACK, if there is no eigenvalue with zero residualnorm, the sele
tion of number of ve
tors to save is based on the following formula,k = neig +min(n
; (m� neig)=2): (8)In addition to the above formula, there is also a spe
ial 
ase when neig = 1. Sin
e we always
ompute more than one eigenvalue, the spe
ial 
ase is not relevant to our test problems.By sele
ting k using the above equation, the thi
k-restart Lan
zos method uses followingiterations and time to solve the two sili
on 
luster test problems.MATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 402 299 293 4.43 3.21 4.79si6 2280 283 405 66.4 7.87 15.9This imitation of ARPACK has very similar performan
e to the s
heme depi
ted byEquation 7. The a
tual performan
e of ARPACK is shown in Table 3. Be
ause of di�er-en
es in the 
onvergen
e test, our restarted Lan
zos method does not use the same time oriterations1. When 
omputing neig smallest eigenvalues, during 
onvergen
e test, ARPACKperforms the test on all neig smallest Ritz values and n
 is the 
ount of how many havesatis�ed the 
onvergen
e 
riteria. In our implementation of the restarted Lan
zos method,we perform the 
onvergen
e test on one Ritz pair at a time until one fails the test or allwanted ones have satis�ed the 
onvergen
e 
riteria. In other words, n
 is the size of the lead-ing group of Ritz pairs that are 
onverged. Be
ause of this di�eren
e, the two 
onvergen
etests will report di�erent n
 even if all the Ritz pairs are exa
tly the same. This di�eren
e
auses the di�erent number of Ritz pairs to be saved and ultimately 
auses the two methodto behave di�erently.To demonstrate that our restarting s
hemes 
an be easily used in ARPACK, we modifyARPACK (dsaup2.f) to use Equation 6 instead of Equation 8. The iterations and timeused by this modi�ed version of ARPACK are1Both ARPACK and our thi
k-restart Lan
zos program (TRLAN) are 
ompiled with the same 
ags(-mips4 -64 -Ofast=IP27 -OPT:alias=restri
t) and linked with the same libraries (-L/usr/lib64-l
omplib.sgimath). The matrix-ve
tor multipli
ations of the Compressed Sparse Row (CSR) matri
esuse the same fun
tion from SPARSKIT [11℄. Examining the hardware event 
ounters through perfex re-veals that both TRLAN and ARPACK run at about the same speed (45MFLOPS for si4 m = 100) butARPACK uses more 
oating-point operations (ARPACK 5:06� 108 FLOP, TRLAN 2:41� 108 FLOP, si4,m = 100). 11



MATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 450 308 343 6.47 6.01 10.2si6 1338 427 471 45.6 18.3 28.4In this test, the number of iterations used by ARPACK is signi�
antly redu
e when thebasis size is small, see Table 3. When the basis size is large, the di�eren
e is small be
ause thenumber of restarted loops are the same before and after the modi�
ation. Ea
h ARPACKrestarted loop builds a basis of size m before performing 
onvergen
e test, a number ofunne
essary matrix-ve
tor multipli
ations were used before the last 
onvergen
e test.In this paper, we use the thi
k-restart Lan
zos method to demonstrate that a goodrestarting s
heme is useful. The brief digression here demonstrates that a good restartings
heme will bene�t the impli
itly restarted Lan
zos method as well. In fa
t, this should betrue for all restarted methods.4.3 Save nearly 
onverged Ritz pairsThis strategy tries to save the Ritz pairs that are 
lose to the wanted eigenvalues and arealso 
loser to 
onvergen
e than an average Ritz pair. The main design 
hoi
e here is whatresidual norms are small enough to be saved. To make the 
omparison 
on
rete, we need tohave referen
e values. One natural referen
e value is the maximum residual norm. ThoseRitz pairs with similar residual norms probably should be ignored. As the referen
e valuefor what should be saved, we use the residual norm of the target Ritz pair. We have de
idednot to use the 
onvergen
e 
riteria to determine this referen
e value be
ause the 
onvergen
e
riteria may not always in
lude an expli
it 
ondition on the residual norms, and even thereis one the a
tual residual norms may always be signi�
antly larger than the residual normtoleran
e. With two referen
e values, now we 
an try to establish a formula for determiningwhat residual norms are small enough to be saved.Let rmax denote a residual ve
tor with the largest norm and rt be the residual ve
torof the target where t is its index. As usual, the Ritz values are in as
ending order. When
omputing the smallest eigenvalues, we will save Ritz pairs 1; : : : ; kl (kr = m) if krik < s,(i = t + 1; : : : ; kl). The values of s is determined ass = max(prmaxrt; 2rt+1): (9)The value of s is usually prmaxrt. To ensure that at least one additional Ritz pair beyondthe target is saved, we added the term 2rt+1. During the a
tual sear
h for kl, we also makesure that kl � m� 3. In addition, s must be less than krmaxk. There are two 
ases where sis greater or equal to krmaxk, krtk = krmaxk or 2krt+1k � krmaxk. In either 
ase, we revertba
k to the strategy des
ribed in subse
tion 4.1.We en
apsulate all above 
onditions in a short program and use it in the thi
k-restartLan
zos method. The following table displays the time and matrix-ve
tor multipli
ationsused to solve the two smaller test problems.
12



MATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 548 304 275 4.87 3.37 6.02si6 1561 279 276 35.1 7.74 12.1The time and number of matrix-ve
tor multipli
ations used to solve the two test problemsare 
lose to those using Equation 6. Solving si4 test problem with m = 100 again uses
onsiderably more time than the optimal time shown in Table 2, it indi
ates that this residualnorm based s
heme has similar short
omings as the previous one.We attempted to use di�erent formulae to 
ompute s, however, none of them 
an vary thetest results signi�
antly. Thus, we de
ide to use Equation 9 for implementing this strategy.4.4 Maximizing the e�e
tive gap ratioThe most straightforward way of implementing this strategy is to evaluate the gap ratio 
for all pairs of kl and kr and then sele
t one pair that gives the maximum 
. Sin
e 
 is amonotoni
 fun
tion of kl and kr, there is no need to sear
h through all possible 
ombinations.In the implementation used for the dynami
 thi
k-restart Davidson method, kr is requiredto be larger than or equal to kl + 3. In this 
ase, we only need to 
ompare di�erent gapratios by always setting kr = kl + 3, whi
h signi�
antly redu
es the number of 
omparisonsneeded. The following table lists the time and matrix-ve
tor multipli
ations used with this
hoi
e of kl and kr. MATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 407 293 280 5.65 10.6 61.1si6 1522 347 271 44.9 25.7 51.5Similar to what is observed in dynami
 thi
k-restart Davidson method, this parti
ularimplementation of dynami
 thi
k-restart s
heme is e�e
tive in redu
ing the number of matrix-ve
tor multipli
ations but is not very e�e
tive in redu
ing the exe
ution time of wholeeigenvalue method. Table 4 shows the minimal time and iterations a
hieved if we �rstdetermine the determine the thi
kness then maximize 
. In this 
ase, the minimal iterationsare a
hieved with about the same thi
kness as those in Table 2 and the minimal times area
hieved with slightly smaller k than those in Table 2. Needless to say, the optimal resultsa
hieved by using di�erent k is 
onsiderably better than always save m � 3. The onlyex
eption is using m = 20 to 
ompute 16 eigenvalues of si6 where both s
hemes save 17 Ritzve
tors. In addition to �rst pi
k the thi
kness before maximizing 
, there are many ways toenhan
e the e�e
tiveness of this strategy and we will 
onsider them in the next se
tion.4.5 Maximizing �There is no free parameter in determining the maximum �. We use a brute-for
e sear
hings
heme to 
ompare all pairs of kl and kr to �nd a pair that maximizes �. In our implemen-tation, we have the following restri
tion on kl and kr, neig � kl � kr�3. The following tablelists the test results of using this s
heme. 13



Table 4: The minimal time and number of matrix-ve
tor multipli
ations used to solve thetwo sili
on 
luster test problems by �rst de
iding how many Ritz pairs to save and then
hoose those that maximize the e�e
tive gap ratio.minimal number of MATVECm = 20 m = 50 m = 100MATVEC k MATVEC k MATVEC ksi4 443 17 288 36a 268 44bsi6 1522 17 274 32 271 43
minimal time (se
onds)m = 20 m = 50 m = 100time k time k time ksi4 4.57 13 3.13 19 4.53 14si6 44.9 17 7.87 22 11.8 43aThe k value of 43 
an also a
hieve the minimum number of matrix-ve
tor multipli
ations.bThe k value of 58, 72, 76, 79, 86, 88, 92, 93, 96 
an also a
hieve the minimum number of matrix-ve
tormultipli
ations.
The k value of 81, 91, 97 
an also a
hieve the minimum number of matrix-ve
tor multipli
ations.MATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 413 295 285 5.31 4.34 9.49si6 1495 488 403 42.3 18.9 23.4Compared to the previous 
ase of maximizing the e�e
tive gap ratio with k = m � 3,this s
heme uses more matrix-ve
tor multipli
ations but less time. However, the results arenot as good as the optimal results shown in Tables 2 or 4. We believe the main reason forthis medio
re performan
e is that the e�e
tive gap ratio de�ned by the Equation 4 is nota

urate when the saved Ritz values are far from the 
orresponding eigenvalues. For thisreason, most of te
hniques used to enhan
e the s
heme of maximizing 
 
an also be used toenhan
e this one.5 Combining di�erent s
hemesIn previous se
tion, we have examined how to implement the four heuristi
s. Tests showthat the individual heuristi
s works fairly well by themselves but they do not always lead tothe \optimal" performan
es. The obje
tive of this se
tion is to explore a number of ways of
ombing the di�erent heuristi
s to generate more robust strategies.
14
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3Figure 3: The residual norms of the Ritz pairs at the �rst three restarts when solving thesi4 test problem.5.1 Whether to save unwanted eigenvaluesFigure 3 shows the distribution of the residual norms against the Ritz values when solvingsi4 test problem. When restarting for the �rst time, the residual norms 
orresponding tothe largest Ritz values are about the same size as those for the smallest ones. Sin
e theRitz pairs with largest Ritz values are dis
arded during the restart, the largest Ritz values
omputed from the se
ond restarted loop are smaller than those 
omputed from the �rstone and their 
orresponding residual norms are mu
h large as well. However, after the thirdrestarted loop, the largest Ritz values and their 
orresponding residual norms are almostexa
tly the same as those from the �rst. Sin
e we don't want the largest eigenvalues, thisrepeated 
omputation appears to be a waste of 
omputing e�ort. A simple alternative todis
arding them is saving them. The goal of this subse
tion is to �nd out whether or not itis worthwhile to save these unwanted Ritz values.The s
hemes presented in subse
tions 4.1 and 4.3 only save the Ritz pairs near the wantedeigenvalues. Our �rst set of tests extend these s
hemes to save the largest Ritz values aswell. The 
hoi
es 
onsidered are: saving only the 
onverged ones, saving a �xed number ofthem, and saving nearly 
onverged ones.To limit the numbers of tests, we start by varying the s
heme des
ribed in se
tion 4.1.The �rst test performed is to save the largest eigenvalues that are 
onverged. The value of klis de�ned by Equation 6. The time and the iterations used to solve si4 and si6 test problemsare 15



MATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 548 304 272 4.87 3.52 5.86si6 1561 279 276 35.0 7.82 11.9From this simple test we see that saving only 
onverged unwanted eigenvalues does notsigni�
antly alter the overall performan
e of the restarted Lan
zos method. There is onlyone 
ase where the modi�ed s
heme redu
es the number of matrix-ve
tor multipli
ations,however, more time is used in the same 
ase.Part of the reason that saving only 
onverged unwanted Ritz values does not work well isthat the unwanted ones are not 
omputed to high a

ura
y in the restarted Lan
zos method.This is espe
ially true when the basis size m is relatively small. One s
heme to over
omethis problem is to always save a �xed number of unwanted Ritz pairs. The next table isgenerated by always saving one unwanted Ritz pair.MATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 548 304 272 4.87 3.52 5.86si6 1561 279 276 35.0 7.82 11.9The time and the iterations in this table are fairly 
lose to those of the unmodi�ed s
hemeshown in subse
tion 4.1. Be
ause of this, we de
ided to save two unwanted Ritz pairs instead.The iterations and time used with this modi�
ation areMATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 539 285 267 5.24 3.26 5.84si6 2468 413 432 79.4 11.9 19.7Saving two unwanted Ritz pairs in addition to a number of wanted Ritz pairs redu
es thenumber of matrix-ve
tor multipli
ations when solving si4 test problem. However, more timewere used in most 
ases. A more 
exible s
heme is needed to de
ide how many unwantedRitz pairs to save. The rationale behind the s
heme des
ribed in subse
tion 4.1 is to save anumber of un
onverged ones in addition to the 
onverged ones. Next we 
onsider a similars
heme for the unwanted Ritz pairs. Let nu denote the number of unwanted Ritz values thathave 
onverged. We save nu + 1 unwanted Ritz values in the next set of tests. The numberof iterations and time are listed in the following table.MATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 527 292 268 5.16 3.33 5.98si6 3407 423 271 111.2 12.1 11.8This modi�
ation redu
es the matrix-ve
tor multipli
ations used when the basis size is 50and 100, but it does not always redu
e the time even when the numbers of iterations areredu
ed. The following are results of applying the same modi�
ation to the s
heme of savingnearly 
onverged wanted Ritz values, see subse
tion 4.3.16



MATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 527 292 268 5.08 3.33 5.96si6 3407 423 271 113.1 12.1 11.8For the two heuristi
s that do not initially save unwanted Ritz pairs, saving unwantedones are helpful in redu
ing number of matrix-ve
tor multipli
ations in some 
ases. Sin
emore Ritz pairs are saved, an iteration on average uses more arithmeti
 operations thanbefore, therefore the modi�ed s
hemes often uses more time overall.The s
hemes des
ribed in se
tions 4.4 and 4.5 save a number of unwanted Ritz values bydesign. Is there a bene�t to not saving those unwanted ones? By dis
arding the unwantedRitz pairs, the number of ve
tors saved will be smaller than before. This may redu
e the
ost of restarting and redu
e the overall exe
ution time. The following table re
ords theiterations and the time used to solve the test problems with a s
heme that �rst maximizes
 (k = m� 3) and then reset kr to m,MATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 390 298 269 4.01 5.15 23.0si6 2134 444 399 66.9 17.6 33.1This modi�
ation to the s
heme of maximizing gap ratio redu
es the exe
ution time of therestarted Lan
zos method, but in
reases the number of iterations in most test 
ases. Similarmodi�
ation is also applied to the s
heme of maximizing �, see subse
tion 4.5. The timeand the iterations used to solve the two test smaller problems areMATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 618 305 277 6.04 3.72 7.32si6 1819 466 389 55.5 15.0 19.3We see that more iterations are used with this modi�
ation 
ompared to the original s
hemeshown in subse
tion 4.5 when the basis size is relatively small (m = 20; 50). Less time isused when the basis size is larger, (m = 50; 100). However, even with this modi�
ation, thes
heme of maximizing � is not able to a
hieve the optimal performan
e shown in table 2.Overall, saving unwanted Ritz pairs using the simple s
hemes des
ribed in this se
tion isbene�
ial only in a small number of 
ases. Based on this set of tests, there is no reason to
hange the four strategies to in
lude or to ex
lude unwanted eigenvalues.5.2 Redu
ing time while maximizing gap ratioIn subse
tion 4.4 we pointed out the need of dynami
ally 
hoosing the number ve
tors to savewhen maximizing the e�e
tive gap ratio. This se
tion will explore 
ombining the observationsmade in subse
tions 4.1 and 4.4 to automati
ally a
hieve the optimal timing results shownin Table 4. 17



The �rst test uses Equation 6 to determine the number of Ritz pairs to be saved, thenmaximize the gap ratio 
 under the 
onstraint that k Ritz pairs will be saved. The iterationsand time used by the thi
k-restart Lan
zos method with this restarting s
heme are shownnext. MATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 908 305 278 9.09 3.46 5.88si6 3159 283 278 69.7 8.02 12.1Clearly, when the basis size is relatively small, say m = 20, mu
h more time is usedwith this s
heme. In fa
t, when the basis size is small (m = 20), none of the variants ofmaximizing gap ratio uses less time than the simple index based s
hemes, see subse
tion 4.1.When the basis size is larger, m = 50 and m = 100, this 
ombined s
heme uses about thesame amount of time as shown in subse
tion 4.1 but more time than the optimal 
ase shownin Table 4.The se
ond test uses Equation 7 to determine the number of Ritz pairs to be saved, thenmaximize the gap ratio 
 under the 
onstrain that k Ritz pairs will be saved. The resultingnumber of iterations and time are listed in the following table.MATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 493 293 292 6.15 3.18 4.68si6 1335 280 403 39.0 7.78 15.7This set of results are again 
lose to simply saving k smallest Ritz values, see subse
tion 4.1.Maximizing � with a �xed k is same as maximizing 
. For this reason, there is no need toapply the same modi�
ation to the s
heme of maximizing �. However, in the implementationused to produ
e the results shown in subse
tion 4.5, we limited kl � kr � 3. When kland kr are 
lose to ea
h other, the value of � is signi�
antly larger than its a
tual value.To avoid this situation, we mandate a larger separation between kl and kr, for example,kl � kr � (m� n
)=2. The test results of using this modi�ed version of maximizing � areMATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 468 287 294 4.58 3.42 6.73si6 2024 511 403 65.0 15.2 18.7We see that this 
hoi
e works reasonably well for si4 test problem but not so well for si6test problem. Using the 
onstraint kl � kr � (m� n
)=2, the number of Ritz pairs saved isguaranteed to be less than (m + n
)=2. When the basis size is small, this leads to too fewRitz pairs being saved.The next modi�
ation relax the sear
h range to kl � kr � min(m � neig; 2(m � n
)=5).This 
hange in
reases the limit on k and allows more Ritz pairs to be saved. This added
exibility helps to redu
e the time and iterations used to solve the si6 test problem as shownin the following table. 18



MATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 471 297 274 4.77 3.59 5.83si6 1209 456 276 32.2 13.9 13.1By ensuring a large separation between kl and kr, we are able to a
hieve mu
h betterperforman
e than allowing them to be arbitrarily 
lose. However, we have not a
hieved theperforman
e target shown in Table 4.5.3 Ensuring 
onvergen
eThe s
hemes des
ribed in subse
tions 4.1, 4.2 and 4.3 do not use the Ritz values whende
iding the thi
kness. One simple way of taking the Ritz values into a

ount is to ensurethat a reasonably large gap ratio is a
hieved. The goal of this modi�
ation is to ensurethat the wanted eigenvalues 
an be 
omputed within spe
i�ed number of iterations. If theresidual ve
tor of the 
urrent target is rt, the e�e
tive gap ratio is 
, and the toleran
eon residual norm is 
, then the number of iterations required to make the target 
onvergemay be estimated as ln(krtk=
)=
. If n
 is the number of Ritz pairs already 
onverged andnmatve
 is the number of matrix-ve
tor multipli
ations (iterations) used so far, the averagenumber iterations to 
ompute ea
h pair is (nmatve
 + ln(krtk=
)=
)=(n
 + 1). Assuming therest of eigenvalues are equally diÆ
ult to 
ompute, the total number of iterations needed to
ompute all wanted eigenvalues isneig(n
 + 1)  nmatve
 + ln(krtk=
)
 ! :The maximum number of iterations to be used is usually spe
i�ed by the user. From theabove expression we 
an derive the desired 
 to ensure solutions are found within the spe
i�ednumber of iterations. It is possible that the quantity nmatve
neig=(n
 + 1) is larger than themaximum iterations allowed. In this 
ase, the above formula will 
ompute an invalid 
(
 < 0). If this happens, we 
ompute a minimal 
 that will ensure the 
urrent target will
onverge in the remaining iterations. In addition, we always make sure that at least threeRitz pairs are dis
arded during restart.The �rst test to in
orporate this heuristi
 is implemented as a modi�
ation to the simpleindex based s
heme. The number of Ritz pairs to save is �rst 
omputed using Equation 6.Additional Ritz pairs are saved to make sure the desired minimal 
 is a
hieved. The follow-ing table lists the number of iterations and time used to solve the two sili
on 
luster testproblems. MATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 488 304 275 4.29 3.70 5.91si6 1369 279 276 32.8 7.86 11.9When the basis size is small (m = 20), the performan
e of the restarted Lan
zos methodwith this modi�
ation is better than without it, see subse
tion 4.1. When basis size is larger,19



m = 50; 100, the performan
e di�eren
es is fairly small. The reason is that with large basissize, Equation 6 already leads to large enough gap ratio and the modi�
ation does not 
hangethe thi
kness used.When the basis size m is 50 or 100, Equation 7 pres
ribes a smaller thi
kness and thismay lead to less time being used. The next test uses the smaller value of Equation 6 and 7,kl = kx; kr = m;kx � n
 +min�(m� n
)(25 + neig10m); neig� ; (10)then modi�es the thi
kness to ensure the minimal gap ratio is a
hieved. The test yields thefollowing results. MATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 488 297 298 4.29 3.01 4.62si6 1369 277 416 32.8 7.40 16.0When the basis size is 50 or 100, the time used by this 
ombined s
heme is very 
lose to thoseused with Equation 7 alone. This is again be
ause the modi�
ation to ensure the minimalgap ratio did not 
hange the thi
kness.The same modi�
ation 
an be applied to the s
heme of saving nearly 
onverged Ritzpairs as well, see subse
tion 4.3. The following table lists the test results.MATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 488 304 275 4.26 3.51 5.96si6 1369 279 276 32.9 7.81 12.0From all the above tests, we see that adding this modi�
ation is useful when the basissize is small. When the basis size is large, our dynami
 thi
k-restart s
heme already a
hievethe desired e�e
tive gap ratio, therefore the additional modi�
ation does not 
hange thea
tual number of Ritz pairs saved.5.4 Using biased estimateThe 
omputed e�e
tive gap ratio 
an be mu
h larger than its a
tual value when the Ritzvalues are di�erent from the 
orresponding eigenvalues. Here we will use an alternativeformula for 
ompute the gap ratio to see whether or not we 
an generate more e�e
tives
hemes.If the residual ve
tor of a Ritz pair is r, then the a
tual eigenvalue is in the range of(��krk; �+krk) whi
h is often 
alled the trust region [7, 10℄. In fa
t, if we want to 
omputethe smallest eigenvalue and �1 is the smallest Ritz value, the a
tual eigenvalue is most likelyin the range of [� � krk; �℄. In this 
ase, we 
an use � � krk as the biased estimate ofthe eigenvalue [14℄. This biased estimate has been su

essfully used as the shift in for the20



Davidson method [14℄. Here we will use it as an alternative way of 
omputing the e�e
tivegap ratio.The biased estimates 
an be 
loser to the a
tual eigenvalue than the Ritz values in some
ases. We 
an use the biased estimates in pla
e of the Ritz values in the formula of e�e
tivegap ratio 
̂ = �kl � krklk � �1 + kr1k�kr + krkrk � �1 + kr1k :Be
ause the residual norms have more 
omplex relation with their indi
es, 
̂ is no longer amonotoni
 fun
tion of kl and kr. However, both krklk and krkrk may be quite small if kl andkr are 
lose to m. If we use a brute-for
e method to sear
h for a pair of kl and kr that givesthe maximum 
̂ we may rea
h the 
on
lusion that the pair kl = m�1 and kr = m is the best,whi
h it is obviously not. Our �rst implementation of this s
heme uses the same restri
tionas in the dynami
 thi
k-restart Davidson method, that is, kl � kr � 3. The following tableshows the results of using this s
heme.MATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 699 324 280 9.94 11.3 60.9si6 2182 606 418 71.7 42.3 84.8This test shows that using 
̂ produ
es roughly the same overall performan
e in the restartedLan
zos method.This test demonstrates that 
̂ has similar short
omings as 
. Sin
e allowing kl and kr tovary arbitrarily does not give the desired results, we 
an let them vary near some values thatare known to be good. In previous se
tion, we have seen that saving kx smallest Ritz valuesworks reasonably well. Now we will try to �nd the maximum 
̂ near kx to see whether we
an further enhan
e it e�e
tiveness. Sin
e this s
heme only sear
hes for a lo
al maxim 
̂, wewill avoid the pitfalls mentioned before. To 
onstru
t a 
omputer program out this idea, weneed to de
ide exa
tly what range to sear
h for kl. Let's �rst 
onsider sear
h in the rangeof (kx; (kx +m)=2). The test results areMATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 575 283 274 5.84 3.72 7.26si6 888 285 416 23.2 9.60 21.5In �ve out of the six test 
ases, more time is used 
ompared to simply setting kl to kx. Nextwe restri
t the above sear
h range with an additional 
ondition of �kx � �kl � �kx + krkxk.The following table lists the results of using this s
heme to determine what Ritz pairs tosave. MATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 517 293 298 4.45 3.03 4.59si6 1181 277 432 27.8 7.74 17.221



The time used to solve the test problems is signi�
antly redu
ed 
ompared to the previousimplementation. The only 
ase that more time is used than the optimal �xed thi
knesss
heme is solving the si6 test problem with m = 100. Overall, this s
heme leads to goodperforman
e for the restarted Lan
zos method.Near the end of the previous subse
tion, we have tested a s
heme of saving kx smallestRitz values and also ensuring the minimal gap ratio is a
hieved. Instead of 
he
king that
 is larger than the minimal value, we 
an alternatively making sure 
̂ is larger than theminimal value. The following table lists the test results of using this alternative s
heme.MATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 474 297 298 4.27 3.04 4.55si6 1463 277 416 34.8 7.38 16.1This set of results are roughly the same as using 
 instead of 
̂. In addition, with either oneof the modi�
ations, the thi
k-restart Lan
zos method uses about the same amount of timeand iterations as simply saving kx smallest Ritz values. The main reason for this is thatsaving kx Ritz pairs already ensure the minimal gap ratio for the two test problems.Similar to repla
ing 
 with 
̂ when maximizing the gap ratio, we 
an also repla
e 
 with
̂ when maximizing �, i.e., maximizing (m � k)
̂. The following table 
ontains the resultsof maximizing (m� k)
̂ under the 
onstraint of kl < kr �min(m� neig; 2(m� n
)=5).MATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 465 303 281 4.68 3.61 7.21si6 1786 501 279 46.6 15.2 13.1The 
orresponding results of maximizing (m�k)
 is shown in the last table of subse
tion 5.2.Comparing the two tables, we see that slightly more iterations and time are used whenmaximizing (m� k)
̂.With the limited number of tests performed in here, we do not see a 
lear advantageof using the biased estimate when 
omputing the e�e
tive gap ratio. We will simply use 
whenever the e�e
tive gap ratio is needed in the remaining of this paper.5.5 Saving degenerate Ritz pairsOne of the heuristi
s not yet 
onsidered is related to degenera
ies. If two Ritz values arenearly identi
al and one of them is to be saved, we should save them both. In a Lan
zosmethod implemented in the 
oating-point arithmeti
, the Ritz values 
orresponding to thedegenerate eigenvalues are never exa
tly identi
al to ea
h other. The main diÆ
ulty toimplement this heuristi
 is how to determine degenera
ies. The 
riteria we use for judg-ing whether or not two Ritz values will eventually 
onverge to two identi
al eigenvalues iswhether their trust region overlap. In this subse
tion we will explore a few di�erent ways ofimplementing this strategy. 22



To limit the number of tests to perform, we start by using this heuristi
 as a modi�
ationto sele
ting k based on Equation 10. In other word, when 
omputing the smallest eigenvalues,we �rst set kr = m and kl = kx, then modify kl to in
lude Ritz values that are 
lose to�kx. To determine whether �i and �i+1 
ould be 
onsidered as degenerate, our �rst test is�i > �i+1 � kri+1k. Using this 
riteria, the results of solving the two sili
on 
luster testproblems are MATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 552 292 295 5.23 3.05 4.58si6 1218 408 412 29.3 11.2 16.0The modi�
ation redu
es the iterations for larger m when solve si4 test problem but thesame is not true for si6 test problem.The se
ond 
riteria for testing whether two Ritz values 
ould eventually 
onverge to thesame eigenvalue is �i + krik > �i+1 and the time and the iterations used to solve the twosili
on 
luster test problems areMATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 600 294 297 5.47 3.07 4.64si6 1839 275 412 43.0 7.37 16.4When the basis size is 20, both above modi�
ations in
rease the time and iterations used
ompared to the original s
heme shown in subse
tion 5.3.The previous two 
riteria for testing degenera
ies are 
ombined to form the third test.In this 
ase, both �i > �i+1�kri+1k and �i + krik > �i+1 have to be satis�ed in order for �iand �i+1 to be 
onsidered degenerate and the results of using this test 
riteria areMATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 533 294 297 4.65 3.02 4.60si6 1458 276 412 33.3 7.39 16.1Sin
e both �i and �i+1 are expe
ted to de
rease in the future iterations and kri+1k isusually larger than krik, we modi�ed the above test to be �i � krik > �i+1 � kri+1k and�i + krik > �i+1. With this test, the trust region of �i is 
ompletely 
overed by that of �i+1.The resulting time and iterations used by the thi
k-restart Lan
zos method areMATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 534 296 297 4.78 3.06 4.60si6 1323 277 412 29.5 7.39 16.0
23



Comparing the results of using these four set of testing 
riteria for determining potentialdegenera
ies, we see that the time and iterations used with small basis size (m = 20) havebeen steadily de
reasing. However, the time and iterations used with larger basis sizes arealmost the same. For future dis
ussion, we will use the last set of testing 
riteria.Sin
e the idea of guaranteeing minimal gap ratio was found to be useful when the basissize is small, we try to 
ombine this heuristi
 and the above tests for degenera
y to seewhether or not the resulting s
heme is even better for small basis size. The resulting timeand iterations used by the restarted Lan
zos method areMATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 504 296 297 4.49 3.06 4.60si6 1395 277 415 33.8 7.46 16.3The set of results are roughly the same as modifying the strategy of saving kx smallestRitz pairs to ensure the minimal gap ratio is a
hieved, see subse
tion 5.3. The additionalmodi�
ation of saving those Ritz values that are potentially degenerate does not signi�
antly
hange the overall e�e
tiveness of the eigenvalue method. Sin
e both modi�
ations are verysimple to implement, we 
an use both of them without signi�
antly 
ost and we will do soin the future tests.The same two heuristi
s 
an also be easily applied to the strategy of saving nearly 
on-verged Ritz pairs, see subse
tion 4.3. The time and iterations used with this modi�ed versionof the strategy are as follows,MATVEC time (se
)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 504 303 274 4.38 3.40 5.87si6 1395 279 275 34.0 7.82 11.9Compared with the results without these two modi�
ations, see subse
tion 4.3, the modi�eds
heme is 
onsiderably more e�e
tive when the basis size is small. Compared with the s
hemewhi
h only has the modi�
ation to guarantee the minimal gap ration, see the last experimentof subse
tion 5.3, we see that the newly added modi�
ation of saving degenerate eigenvaluesdoes not signi�
antly 
hange the overall performan
e.6 Putting it togetherIn pro
eeding se
tions, we have identi�ed four basi
 strategies of determining what and howmany Ritz pairs to save for the thi
k-restart s
heme, (1) saving a number of Ritz pairs basedon indi
es, (2) saving a number of Ritz pairs based on residual norms, (3) saving Ritz pairs tomaximize the e�e
tive gap ratio 
 and (4) saving Ritz pairs to maximize �. We have testeda number of formulae for the �rst two s
hemes and a
hieved a reasonably good performan
eon the test problems. In their simplest forms, the last two s
hemes save too many Ritz pairsin most test 
ases and are only e�e
tive in redu
ing the number of iterations. Be
ause they24



save too many Ritz pairs, ea
h iteration is more expensive on average. This leads to moretime being used by the Lan
zos method with these two restarting strategies.We have experimented with modifying the four basi
 strategies by (1) saving the un-wanted Ritz values in addition to the wanted one, (2) for
ing the last two s
hemes to saveless Ritz pairs, (3) using an alternative formula for the e�e
tive gap ratio, (4) maintaininga reasonable gap ratio, and (5) saving potentially degenerate Ritz pairs. When a relativelysmall portion of the Lan
zos basis is saved during restarting, in
luding additional unwantedRitz pairs 
an redu
e the number of iterations. In our tests, this happens when the basissize is 50 or 100. When the number of Ritz pairs saved is 
lose to the basis size m, savingadditional unwanted Ritz pairs generally 
auses more time to be used. This is the 
ase whenthe basis size is 
lose to the number of eigenvalues wanted. If we �rst 
hoose a moderatesize k then try to maximizing 
, the di�eren
e between kl and kr is �xed and the resulting
hoi
es often lead to better performan
e than allowing kl and kr to be
ome arbitrarily 
lose.Computing the gap ratio using the biased estimates of the eigenvalues do not signi�
antlyalter the overall e�e
tiveness of the eigenvalue method 
ompared to 
omputing gap ratiousing Ritz values. The last two modi�
ations of maintaining a reasonable gap ratio andsaving degenerate Ritz pairs are relatively inexpensive to implement and fairly useful whenthe basis size is 
lose the the number of eigenvalues wanted.As an example of how to use all the di�erent heuristi
s, we will des
ribe our �nal imple-mentation of the four restarting strategies.1. Index based s
heme When trying to �nd a number of the smallest eigenvalues, atea
h restart, this s
heme sele
tskl = n
 +min�neig; (m� n
)(25 + neig10m)�smallest Ritz pairs. This basi
 
hoi
e is modi�ed to ensure a minimal gap ratio is a
hieved,see subse
tion 5.3 and potentially degenerate Ritz pairs are saved, see subse
tion 5.5. Nounwanted Ritz pairs are saved in this 
ase (kr = m).2. Residual norm based s
heme This s
heme saves Ritz pairs near the wanted eigen-values and have residual norms smaller than rs = max(2rt+1;prmaxrt), see subse
tion 4.3.Two modi�
ations are applied after the basi
 steps are taken, they ensure a reasonable gapratio is a
hieved and save potentially degenerate Ritz pairs. No unwanted Ritz pairs aresaved.3. Maximizing e�e
tive gap ratio This s
heme �rst determines the number Ritz pairsto be saved, k = max (neig; (3m+ 2n
)=5), then sear
h for a 
ombination of kl and kr thatgives the largest 
. The above formula gives the following relation for kl and kr is kl =kr +min(m� neig; 2(m� n
)=5). No further modi�
ation is applied.4. Maximizing progress This s
heme sear
h through all possible 
hoi
es of kl and kr tomaximize the value of � = (m � k) � 
. The 
onstraint on kl and kr is kl � kr � min(m �neig; 2(m� n
)=5). 25



Table 5: Time and iterations used to 
ompute the �ve smallest eigenvalues of InGaAs9k testproblem. MATVEC time (se
)index s
heme 1469 144.6residual s
heme 2813 274.2max 
 3461 336.4max � 984 104.2
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Figure 4: The time (se
onds) used to �nd di�erent number of eigenvalues of the InGaAs9ktest problem.Table 5 lists how these four s
hemes perform when 
omputing the �ve smallest eigenvaluesof the InGaAs9k test problem. The elapsed time is measured on 32 pro
essors of a CrayT3E-900. Compared to the timing results shown in Figure 1, we see that the Lan
zos methodwith restarting s
heme one and four uses signi�
antly less time than the minimal time usedwith the �xed thi
kness s
heme.In many ele
troni
 stru
ture 
al
ulations, a large number of eigenvalues and eigenve
torsare 
omputed. Figure 4 demonstrates how the thi
k-restart Lan
zos method s
ales as thenumber of eigenvalues in
reases. In this test, the basis size used is always neig + 20. Inother word, the Lan
zos only need workspa
e to store 21 ve
tors, 20 for the Lan
zos ve
tors,one for the residual ve
tor. The neig ve
tors needed to store the eigenve
tors are used by26



the program to store Ritz ve
tors as well. From the plot we see that the time required to
ompute the smallest eigenvalue is almost the same as 
omputing two smallest ones. Whenthe number of eigenvalues to be 
omputed is between 2 and 32, the last two restartings
hemes are slightly better than the �rst two. Using one of the last two restarting s
hemes,doubling the number of eigenvalues, the restarted Lan
zos method takes about 45 per
entmore time. When 
omputing more than 32 eigenvalues, in other words, when neig > m=2, the�rst two restarting s
hemes be
ome more 
ompetitive than the last two. In the range tested,the Lan
zos method with the �rst s
heme uses 65 per
ent more time when the numberof eigenvalues doubles, and the Lan
zos method with the se
ond restarting s
heme usesabout 55 per
ent more time. No matter whi
h restarting strategy is used, the thi
k-restartLan
zos method s
ales sublinearly with the number of eigenvalues. This suggests that thethi
k-restart Lan
zos method may be used to 
ompute a large number of eigenvalues.In general, the behavior of the thi
k-restart Lan
zos method is determined by the detailsof the spe
trum distribution. The fa
t that the optimal thi
kness is signi�
antly di�erentfor si4 and si6 test problem when m = 100 demonstrates this point 
learly. Through thetests, we have demonstrated the importan
e of developing good restarting strategy and haveshowed how to implement the four di�erent restarting s
hemes. Our tests shown that thethi
k-restart Lan
zos using these restarting strategies is 
apable of eÆ
iently 
omputing alarge number of eigenvalues and eigenve
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